Capacity of the sun a a virtually limitless source of energy

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that."
~Thomas Edison (1847~1931)

Buildings as Power Stations: a new vision for the built environment

"Every day we get enough energy from the sun to power our planet for 27 years...yet nearly all of this goes to waste."
~Research project SPECIFIC by Swansea University

Solar light for the base of the pyramid

"Did you know that breathing kerosene fumes is the equivalent of smoking two packets of cigarettes a day and two-thirds of adult females with lung cancer in developing nations are non-smokers.Yet globally, an estimated 500 million households still rely on kerosene or other liquid fuels for lighting." By yours trully

Energy: A multifaceted divide

“ Access to electricity is fundamental to opportunity in this age. It’s the light that children study by, the energy that allows an idea to be transformed into a real business. It’s the lifeline for families to meet their most basic needs, and it’s the connection that’s needed to plug Africa into the grid of the global economy.”
US President Barack Obama

Sustainability development

"In a few decades, the RELATIONSHIP between the environment, resources and conflict may seem almost as obvious as the connection we see today between human rights, democracy and peace"
~Wangari Maathai (1940 - 2011)

Saturday, June 4, 2011

Solar generator

 




    
What we need to generate power from solar
  1. Solar Panel  
  2. Charge controller
  3. battery
  4. DC to AC power Inverter 
  5. Digital voltage meter to monitor the current flow

        Charge Controller 
It limits the rate at which the current is added or drawn from  the battery.t prevents overcharging and may prevent against over-voltage which can reduce battery performance or lifespan, and may pose a safety risk. It may also prevent completely draining ("deep discharging") a battery, or perform controlled discharges, depending on the battery technology, to protect battery life. The terms "charge controller" or "charge regulator" may refer to either a stand-alone device, or to control circuitry integrated within a battery pack, battery-powered device, or battery recharger. 

Charger Controller Types

Charge controls come in all shapes, sizes, features, and price ranges. They range from the small 4.5 amp (Sunguard) control, up to the 60 to 80 amp MPPT programmable controllers with computer interface. Often, if currents over 60 amps are required, two or more 40 to 80 amp units are wired in parallel. The most common controls used for all battery based systems are in the 4 to 60 amp range, but some of the new MPPT controls such as the Outback Power Flexible go up to 80 amps.

Charge controls come in 3 general types (with some overlap):

Simple 1 or 2 stage controls which rely on relays or shunt transistors to control the voltage in one or two steps. These essentially just short or disconnect the solar panel when a certain voltage is reached. For all practical purposes these are dinosaurs, but you still see a few on old systems. Their only real claim to fame is their reliability - they have so few components, there is not much to break.
3-stage and/or PWM such Morningstar, Xantrex, Blue Sky, Steca, and many others. These are pretty much the industry standard now, but you will occasionally still see some of the older shunt/relay types around, such as in the very cheap systems offered by discounters and mass marketers.
Maximum power point tracking (MPPT), such as those made by Xantrex, Outback Power, Morningstar and others. These are the ultimate in controllers, with prices to match - but with efficiencies in the 94% to 98% range, they can save considerable money on larger systems since they provide 15 to 30% more power to the battery.
Most controllers come with some kind of indicator, either a simple LED, a series of LED's, or digital meters. Some newer ones, such as the Outback FM60/80 and others now have built in computer interfaces for monitoring and control.  The simplest usually have only a couple of small LED lamps, which show that you have power and that you are getting some kind of charge. Most of those with meters will show both voltage and the current coming from the panels and the battery voltage. Some also show how much current is being pulled from the LOAD terminals.
All of the charge controllers that we stock are 3 or 4-stage PWM types, including the MPPT units. (in reality, "4-stage" is somewhat advertising hype - it used to be called equalize, but someone decided that 4 stage was better than 3). And now we even see one that is advertised as "5-stage"....